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Outline

I p-ary bent functions.

I Duality of p-ary regular bent functions.

I Duality of p-ary bent function in the non-regular case.

I Vectorial dual.

I Bent functions and difference sets.
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p-ary bent functions

Definition
A function f : Fn

p → Fp is p-ary bent if∣∣ ∑
x∈Fn

p

ζ
〈a,x〉+f (x)
p

∣∣2 = pn

for all a ∈ Fn
p.

As usual, ζp = e2πi/p is a complex p-th root of unity, and 〈a, x〉 is
a non-degenerate bilinear form.

If p = 2, these are the classical bent functions.
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Quadratic examples if p is odd

f (x) = xTAx

where A ∈ F(n,n)
p is a non-singular symmetric matrix.

Without loss of generality

f (x1, . . . , xn) = x2
1 + x2

2 + · · ·+ d · x2
n

where d 6= 0.

Note: n can be odd.
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Proof

One can proof this directly, or use

Observation
f is bent if and only if

x 7→ f (x + a)− f (x) is balanced

for all a ∈ Fn
p, a 6= 0:

(x + a)TA(x + a)− xTAx = 2xTAa + aTAa = b

has precisely pn−1 solutions for all b and all a 6= 0.
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p odd: The number theory

Walsh coefficients f̂ (a) =
∑
x∈Fn

p

ζ
〈a,x〉+f (x)
p ∈ Z[ζp]

If p is even, there are 2 possibilities.

If p is odd, there are 2p possibilities (Helleseth, Kholosha
(2006)):

I pn ≡ 1 mod 4: Walsh coefficients ±ζ jppn/2

I pn ≡ 3 mod 4: Walsh coefficients ±iζ jppn/2

Definition (Kumar, Scholtz, Welch (1985))

Regular: f̂ (a) = ωζ
f ∗(a)
p pn/2 for all a for some fixed element ω:

Then f ∗ is called the dual of f .

Theorem (Kumar, Scholtz, Welch (1985))

f ∗ is bent if f is regular.
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Maiorana-McFarland construction F2m
p → Fp

Theorem

f (x , y) = Trace(x · π(y)) + ρ(y)

is bent if π : Fm
p → Fm

p is a permutation and ρ : Fm
p → Fp.

Alternative:
f (x , y) = fy (x) + ρ(y)

where fy : Fm
p → Fp is linear and fy 6= fy ′ if y 6= y ′.

Alternative:
f (x , y) = gy (x)

where gy are affine and the supports of the Walsh spectra are
disjoint.
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Generalized Maiorana-McFarland construction

Let gy : Fm
p → Fp be a collection of ps functions such that the

supports of the Walsh spectra are disjoint. If the functions are
ps -plateuead, (that is Walsh spectrum takes values 0 and ±p(m+s)/2) then
f : Fm

p × Fs
p → Fp with

f (x , y) = gy (x)

is p-ary bent.

Example

If f bent on Fk
p , then the mappings

gy (x ′, x ′′) = f (x ′) + 〈y , x ′′〉

do the job (x ′ ∈ Fk
p , x ′′, y ∈ Fs

p).
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Comments

Observation
The Maiorana-McFarland construction as well as all quadratic
examples give regular bent functions.

Theorem (Ceşmelioğlu, McGuire, Meidl (2012))

The (non-regular) generalized Maiorana-McFarland construction
gives regular and non-regular bent functions (s 6= m).

See also Davis, Jedwab (1997).
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Non-regular bent functions and their duals

Walsh spectrum has 2p values ±ωζ ippn/2. We can define a dual
even if the spectrum takes 2p values!!

Theorem
The duals of the generalized Maiorana-McFarland construction are
bent if the gy are regular.
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Two more families p = 3

Theorem (Helleseth, Kholosha (2006), Helleseth,
Hollmann, Kholosha, Wang, Xiang (2009))

The following two families of bent functions are regular:

I n = 2k, k odd, α element of order 4(3k − 1):

Trace
(
αx

3n−1
4

+3k+1
)

I Coulter, Matthews (1997)

Trace(
(
αx

3i+1
2
)
, gcd(i , n) = 1, 3 ≤ i ≤ n odd

Heavy proofs!
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Questions

What is special about these functions that is so difficult to prove
regularity.

Theorem
The two families are not in the generalised Maiorana-McFarland
family.

Note: The Coulter-Matthews example is actually a component of a
planar function!
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Dual of diagonal quadratic function

Theorem
If

f (x) = d1x2
1 + d2x2

2 + . . .+ dnx2
n

then the dual is

f ∗(x) = − x2
1

4d1
− x2

2

4d2
− . . .− x2

n

4dn
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Dual of Maiorana-McFarland

Theorem
Let

f (x , y) = Trace(x · π(y))

then
f ∗(x , y) = Trace(−y · π−1(x)) + ρ(π−1(y))

where x , y ∈ Fpm , π permutation, ρ arbitrary.
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The role of the inner product

Note that the dual function depends on the choice of the bilinear
form. In the Maiorana-McFarland case, we choose

Trace(x · x ′ + y · y ′)

on Fpm × Fpm .

Having a dual does not depend on the choice of the inner product,
but self-duality does.
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Spreads

V = Fpm × Fpm , U0,U1, . . . ,Upm subspaces of dimension m with
pairwise trivial intersection. Let i → γi be a balanced function
from {1, 2, . . . , pm} to {1, . . . , p}. Then

f (z) =

 γi if z ∈ Ui , z 6= 0, 1 ≤ i ≤ pm

γ0 if z ∈ U0.

is bent.

Theorem

f ∗(z) =

 γi z ∈ U⊥i , z 6= 0, 1 ≤ i ≤ pm

γ0 if z ∈ U⊥0 .
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Self-duality

Theorem
There are no regular self-dual bent functions if pn ≡ 3 mod 4.

Theorem
There are quadratic self-dual bent functions with respect to the
classical inner product if there is a symmetrix matrix A such that
A2 = −1

4 I. Easy if p ≡ 1 mod 4. We can use these recursively to
find self-dual bent functions of large degree.
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More examples

Theorem
Let f be a partial spread bent function for a symplectic spread with
respect to an alternating bilinear form 〈 , 〉. Then f is self-dual
with respect to that bilinear form.

Theorem (Helleseth, Kholosha (2006))

Let n = 2k and t be a positive integer satisfying gcd(t, 3k + 1) = 1.

Then the function f (x) = Trace(ax t(3k−1)) from F3n to F3 is bent

if and only if Kk(a3
k+1) = −1. If Kk(a3

k+1) = −1 then f (x) is

regular bent and f̂ (b) = 3kζ−Trace(a3k bt(3k−1)).

Observation
For k = 3, 5, 7 there exist self-dual bent functions of that type.
with respect to the trace bilinear form.

18 / 31



Further non-regular examples

The following functions are not regular:

I g1 : F36 → F3 with g1(x) = Trace(ξ7x98), where ξ is a
primitive element of F36 .

I g2 : F34 → F3 with g2(x) = Trace(α0x22 + x4), where
α0 ∈ {±ξ10,±ξ30} and ξ is a primitive element of F34 .

I g3 : F33 → F3 with g3(x) = Trace(x22 + x8).

I g4, g5 : F36 → F3 with
g4(x) = Trace(ξx20 + ξ41x92), g5(x) = Trace(ξ7x14 + ξ35x70),
where ξ is a primitive element of F36 .

Helleseth, Kholosha (2006, 2010), Tan, Yang, Zhang
(2010).

Observation
g3 and g4 have a bent dual, the others not. g3 is generalized
McFarland, g1 not.
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Infinite family of bent functions without a dual

Let 1, α, β ∈ Fpm be linearly independent over Fp. If

|
∑

y1,y2∈Fp

η(1 + y1α + y2β)ε−y1y2p | 6= p,

then the function F : Fpm × F2
p → Fp

F (x , y1, y2) = Trace(x2) + (y1 + Trace(αx2))(y2 + Trace(βx2))

is a bent function without a dual.
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Recursive Construction

Theorem
If g is bent and h is bent without a dual, then
f (x , y) = g(x) + h(y) has no dual (g : Fm

p → Fp, h : Fn
p → Fp).

We have a second recursive construction.

Question
Find more functions for which the dual is not bent.
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Vectorial bent functions

Most constructions of bent functions are “vectorial” constructions.

Definition
A function F : Fn

p → Fm
p is vectorial bent if all component

functions x 7→ 〈a,F (x)〉 are bent. If m = n: Planar functions.

Example

F (x , y) = x · y as a mapping Fpm × Fpm → Fpm .

Other example: Coulter-Matthews.

Question
Is there a duality concept for such vectorial functions?

Problem
Even if the sum of two bent functions is bent, this is not
necessarily true for the duals.
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Vectorial dual

Definition
A vectorial bent function has a dual if the set of dual functions
form a vector space of bent functions.

Example

F (x) = x2 on Fpm . The dual of Trace(ax2) is Trace(− x2

4a). Hence
if we look at the function Fpm → Fpm , the function has a dual, but
there are sub-vectorial functions Fpm → F2

p without a dual: The set

{ 1

λa + µb
: λ, µ ∈ Fp}

do not form a vector space.

In general, the duals of planar functions are not planar.
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Example of a vectorial dual bent function

Theorem
The vectorial versions F : F2m

p → Fm
p of the spread functions have

a vectorial dual which is the same as the original function with
respect to the alternating bilinear form (self-dual).

Question
Are there examples besides x2 of planar functions whose dual
functions also form a planar function?
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p = 2: Difference sets

Observation
f : Fn

2 → F2 is bent if and only if

Df := {x ∈ Fn
2 : f (x) = 1}

is a (non-trivial) difference set in Fn
2:

A subset D ⊂ G of a group G is a difference set if any non-zero
element g ∈ G has a constant number of representations
g = d − d ′ with d , d ′ ∈ D.

Non-trivial: 2 ≤ |D| ≤ |G | − 2.

25 / 31



p = 2: Equivalence

Two difference sets D and D ′ are equivalent if there is a group
automorphism ϕ such that ϕ(D) = D ′ + g = {d + g : d ∈ D ′}.

Strange Observation

Equivalent bent functions may give rise to inequivalent difference
sets.

Reason: Adding linear functions
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p = 2: Relative difference sets are the better objects

Definition
A subset R ⊂ G of a group G is a relative difference set with
respect to N ≤ G if all g ∈ G \ N have a constant number of
representations g = d − d ′ with d , d ′ ∈ R, and no non-zero
element in N has such a representation.

Observation
f : Fn

2 → F2 is bent if and only if

Rf := {(x , f (x)) : x ∈ Fn
2}

is a relative difference set in Fn
2 × F2 relative to {0} × F2.
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Example and Observation

Example

{(0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 1, 0)}

is a relative difference set in F3
2 with respect to {(0, 0, 0), (0, 0, 1)}.

Observation
f and g are equivalent bent functions if and only if Rf and Rg are
equivalent.
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Difference sets and incidence structures

If R is a difference set, the development of R is an incidence
structure:

I Points: Elements in G .

I Blocks: Translates R + g = {r + g : r ∈ R}.
These are incidence structures with G as (regular) automorphism
group and vice versa.

Observation
Equivalence of difference sets implies isomorphisms of incidence
structures, but not vice versa, so it is possible that one incidence
structure gives rise to several bent functions.
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Difference set interpretation of dual

Vectorial bent functions also correspond to relative difference sets.

Is there an interpretation of having a dual in terms of the relative
difference set?
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Summary

I p-ary bent functions.

I Duality concept: The regular case.

I Duality concept: The non-regular case.

I Vectorial duality.

I Connection to difference sets?
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